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o Macroscopic

= Dielectric response of matter
o Index of refraction, dielectric function
o Attenuation and dispersion

= Model dielectric functions
o Microscopic
= Phenomenology, from IR to x-rays
= Cross section and attenuation coefficient
= Scattering processes and the atomic form factor

= Photoelectric absorption
o absorption edges, de-excitation processes

o Relation between the atomic form factor and index of refraction
o Interaction between radiation and hydrogen — like atoms, semi-classical

= Photoelectric absorption cross - section
= Scattering cross - section
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Dielectric response

* General problem: how does condensed matter
respond to the application of an external
pertubation?

* The EM wave is the external pertubation

* First approach:
macroscopic / collective

e Second approach:
microscopic /atomic / particle



Elementary phenomenology

* An electric field applied to a dielectric (no free
charges) polarization

— By distortion
— By orientation
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Dielectric response

* The applied field will in general have a space

and time dependence E(F, t) which will affect
the response



Polarization and susceptibility

* Assume the response of matter to the applied field
is linear

o OK for not too high fields
o not OK for high power visible, EUV and X-ray lasers

* Apply linear response theory

* The electric dipole moment per unit volume is the
polarization vector P

* Within the linear approximation introduce the
electric susceptibility y
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Polarization and susceptibility

e Susceptibility is in general a tensor quantity;
for simplicity here consider it a scalar.

 We will study the scalar relations in the
frequency domain

P(w) = gx(w)E(w)

* The dielectric response of matter determines
X(w)



Dielectric displacement

* The dielectric displacement vector is defined as

l_)) — goﬁ —+ }_))
* The direct proportionality between D and E is
written as
l_j — 808 E

in which € is the «dielectric constant», better
called permittivity or dielectric function

* Clearly
e=1+y



Dielectric displacement

* We will study dynamics (time dependent
properties)

e Susceptibility and dielectric function are «linear
response functions»

o Independent of the external field

o Describe system properties



The dielectric function

* D(w) = gpe(w)E(w)

o &(w) has a real and imaginary part: e(w) = & (w) + i, (w)
* The w dependence of € is determined by

o The spectral range

o The corresponding type of excitations possible

o The specific properties of the system

Spectral range Excitation processes

Micro - waves Molecules, free or in solution Molecular rotations
Infra - red Molecules, free or in solution Molecular vibrations
Infra - red Solids Phonons

Valence electron

Visibile — UV Atoms, molecules, solids .
transitions

Core level electron

X - rays Atoms, molecules, solids "
transitions

*
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Dispersion and attenuation

 The dielectric function determines dispersion

and attenuation of an EM wave propagating in a
polarizable medium

o a not too rarefied gas, a liquid, a solid or any other
state of aggregation (liquid crystal, plasma ...)

* |n vacuum the dispersion relation for EM waves
IS

w = ck

c is the speed of light in vacuo.



Dispersion and attenuation

* Inthe medium the dispersion relation is modified by the
presence of the index of refraction n(w):

C
k
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e The index of refraction is

n(w) = e(w)u(w)

* Neglecting magnetic effects, u(w) =1

n(w) = e(w)

 n(w) and (w) are macroscopic quantities which describe the
interaction between the wave and the medium




Dispersion and attenuation

* Consider a plane wave propagating along x

: n\w) w
E = Eje'k=00); k(w) = (@)

C
* n(w) has a real and an imaginary part:

n(w) = ny(w) + iny(w)
 Therefore, also the wave number has a real and

Imaginary part

k(w) = [ny (w) +Cl:n2 (w)] w — Iy (@) + ik, (@)

ki(w) = nl((é)) w ky(w) = nz(cé)) w



Dispersion and attenuation
nl(w)+icnz(w)]w — kl((,l)) + lkz((l))

ki(w) = nl((:) = ky(w) = nZ((é)) =

* The effect on the space propagation is

. k(w) ="

elkx — elkl(a))x e—kz(a))x

\ Y J | Y }

Propagation term || Attenuation term

* The space —time dependence of the wave is thus

E = Eoei[kl(w)x—wt] e—kz (w) x



Dispersion and attenuation

e F = Eoei[kl(w)x—wt]e—kz(w)x

e ki(w) = “mlc(“)) is the modified wave vector

Cc

o the phase velocity of the wave is v =
nq(w)

e ky(w) = ‘”"ZC(“’) determines the attenuation of
the wave as it traverses the medium

* n,(w): dispersion (modifies the speed of
propagation)

o If the wave crosses the interface between two media
it will change direction (refraction)

* n,(w): attenuation



The linear attenuation coefficient
e k,(w) = 2721 . gttenuation of the amplitude

Cc

 Since I « |E|? the attenuation coefficient of the

Intensity is
2wn, (w)

U= -
e |f the total thickness traversed is L the trasmitted
intensity I is related to the incident one [, by

— X
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 For an infinitesimal thickness —)
Io I
dl
T - H dx dx



Relation between ¢ (w) e n(w)

* ny(w) + iny(w) = \/51 (w) +igy(w)
 Therefore:

0& =N¢ —ny?, & =200,

Jertlel " -1+l
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Relation between ¢ (w) e n(w) — weak interaction

e Withe=1+4+¢+1ig, ife'ande, < 1:
weak interaction limit (X-ray range)

* In this limit
_ !/ ” ~ 1 ./ -1
n—\/1+£ +ig, =21+5¢ +i5¢6,
* By convention, in the weak interaction limit the index of
refraction is written as

nw)=1-46(w) +if(w)
5§ = —1¢', B = ;—82

2
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Model dielectric functions

e Study two simple models for ¢ (w) to illustrate
general features of the dielectric response of
matter
— Static (@ = 0) distortion polarization
— Damped harmonic oscillator



Static distortion polarization

* A static electric field applied to a classical molecule
consisting of point charges: nuclei and electrons

* N charges q; with mass m;, elastically bound to their
equilibrium position by a restoring force

.. 2.
m;wj-T;

in which r; is the displacement of the j—th charge in the
direction of the electric field
= j=1,..N

" wjis the resonance frequency of the j—th charge




Static distortion polarization

* The force acting on each charge is q; E

e At equilibrium the displacement of each

charge is
e — _4j
7} mja)jz E
2
* The induced dipole momentis p; = U _E

ey L2
m;w;

* The total induced dipole moment is

N
2

E

Ly -2
(g T jWj
j=1



Static distortion polarization

* If the (number) density of molecules is pthe
static permittivity is

L2

8((1)_0)_1+p21 111#
J]7]

o Always > 1

o Reasonable behaviour as a function of masses,
density and resonance frequency
»increases with p
»decreases with m; and w;



Damped harmonic oscillator: approximations

* Indescribing the effect of an EM on a collection of charges
which simulate the dielectric response of matter we make the

following important approximations
1) Electric dipole approximation

o A » displacement of charges (neglect spatial variation of field): validity
depends on spectral range

2) Neglect motion of nuclei, consider only the contribution of

electrons
o Justified in view of the great difference in mass

3) Neglect effect of force q(ﬁxﬁ) due to magnetic field
o Justified since it is weaker than gE

4) Neglect «radiation damping» due to emission of radiation
o An accelerated charge will always emit radiation: it will thus lose energy
o This effect is often considered as due to a «self — forcen.




Damped harmonic oscillator

* First consider a single electron

o equilibrium position in the origin,
displacement r attime ¢

o charge —e and mass m

o elastically bound to its equilibrium position by a
restoring force

—Mmwyr

> w, is the resonant frequency (frequency of unforced

oscillations)
o subject to a dissipative viscous force
dr
_m —
T



Damped harmonic oscillator

e The external electric field is written as
Eoe—iwt
* The classical equation of motion is
dr d?r

t 2
— MwnanY — MYy —m=— MM ——
0 T dt2

—eE,e %



Damped harmonic oscillator

* We seek a solution of the type r(t) =
R(w)e—iwt
* We easily find

R(w) =

e

E
m(w? — wy? + iyw) °

* The induced dipole moment is

62

p(w)e—iwt — Eoe—iwt

m(wo?—w?—iyw)



An atom as an ensemble of oscillators

* Model an atom as composed of Z electrons
arranged in M shells with equal characteristic

Wi, Vj

 Each shell contains f] electrons, with

M
2.fi=
j=1



An atom as an ensemble of oscillators

* Following the single electron result, the
atomic dipole moment induced by the
external field is

((1)) — HE ((1) B (UZ iij) E

. f] is known as the «oscillator strength»: it

determines the contribution of the j—th shell
to the dipole moment




A medium as an ensemble of polarizable atoms

* |f the (number) density of identical atoms is p, we
find M

f,
e(w) =1+ 2 z .
fi(wj®-w?)

* Hw)=1+ %2%1 [(wjz—w2)2+(ij)2]

. _ pe? M JiYi®
82(60) — 80m2]=1 [(wjz—w2)2+(yja))2]

 Kramers — Heisenberg or electric dipole dielectric
function



Near resonant behaviour

/\ e (@)
: T
«<Anomalous dispersion»

Attenuation Full width at half maximum
(FWHM) = %

Dispersion

«Resonant absorption»
>

0]} Q)
J

e A simple model which reproduces well the response of
polarizable media in many frequency ranges
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Figure 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid
water as a function of linear frequency. Also shown as abscissas are an energy scale
(arrows) and a wavelength scale (vertical lines). The visible region of the frequency
spectrum is indicated by the vertical dashed lines. The absorption coefficient for
seawater is indicated by the dashed diagonal line at the left. Note that the scales are
logarithmic in both directions.
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