Interaction between EM radiation
and hydrogen-like atoms: semiclassical theory
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Introduction

* Semi-classical theory of the interaction between
radiation and hydrogen — like atom:s.
* Semi-classical since

— Radiation is treated as wave
— Atom is treated with quantum mechanics

* This approach is adequate since it can describe
scattering and stimulated absorption and
emission

— |t cannot describe spontaneous emission

e Full quantum treatment requires quantization of
EM field: more formal

* All phenomena occurring in hydrogen — like
atoms are present in many electron ones



A monochromatic photon beam

* Even within the semi-classical approach we
will find that absorption and emission of
energy between the beam and atoms occurs
in quanta of magnitude Aw, that is photons

* Even scattering will be describe in terms of
photons.

* Therefore: extend definitions of intensity and
flux in particle — like termes.



Monochromatic radiation beam: definitions

- O ) L

(Number of photons which cross a surface perpendicular to k )/
(unit time)

I : Intensity = (Energy crossing the surface) / (unit time)

@ : Photon flux =
(Number of photons crossing the surface) / (unit time x area)

F: Energy flux= (Energy crossing the surface) / (unit time x area)

N
I = Nhow F=Zhw F=® hw



Interaction between a wave and an atom

e The interaction is treated with time dependent
pertubation theory

* The unperturbed atom’s Hamiltonian is H,

* The pertubation is an EM wave and the time
dependent interaction Hamiltonian is H'(t)

* The EM wave has a harmonic dependence on

time, thus it is expressed by an Hermitian operator
of the type

H'(t) = He'®t 4+ HTe~iwt

in which H is an operator which does not depend
on time



Time dependent perturbation theory

* The unpertubed atom has eigenstates labelled «a»
and «b» with energies E,° and E,°
» Often called the «initial» and «final» states
* It can be demonstrated that the transition probability

is maximized for two «resonant» conditions deriving
from different terms in H’(bt)

Hte~twt [ hw = E,° — E,°
a
a

Heiwt J hw = an — Ebo
b




Time dependent perturbation theory

Stimulated absorption

Hte lwt
b
0 0
how = Eb — Ea
a
A\ﬁ, Heia)t
a
how = aO — Ebo

A photon of energy hw
is absorbed by the atom
The atom makes a
transition froma to b

Stimulated emission

A photon of energy hw
is emitted from the
atom

The atom makes a
transition fromato b




Fermi’s golden rule: transition to discrete states

* For the case of absorption it can be demonstrated that, to
first order in the pertubation, the transition probability per
unit time for transitions between discrete levels a and b is

21 |
Wy, = %|HTba\25(Eb° - E,° — ho)

- Ht,, = (b|H"|a) is the matrix element of the perturbation

* The Dirac ¢ function is an expression of the conservation of
energy

» Apparently unphysical: the probability is always 0 except at resonance
in which case it diverges. This will be resolved by introducing the
concept of lifetime of the eigenstates




Fermi’s golden rule: transition to continuum states

* For absorption with final states b in the continuum
it can be shown that

2T | ~ 2
Wha = T‘HTba‘ p(Ep’)
with the condition that E;,° = E,° + Aw

* p(E) is the density of states, such that the number
of states between E and E + dE is

dN = p(E) dE



The classical EM field

e The EM field is described in terms of the vector and
scalar potentials A(7,t) and ¢ (# t)

V(@ t) — Electric field

(7, t). Magnetic induction field

1T}



A plane monochromatic EM wave

A, t) = 8| A(w)el@FD + A (w)e i@k
QA(7 1)

T

B(# t) = %(l?xﬁ) = i(kx&) [—A(a))ei(wt—E.F) +A*(w)e—i(wt—ﬁ-f)]

* The polarization is defined by &. E
It can be linear or circular | i
 A(w) determines the amplitude and

intensity of the wave i el
» Actually it is real, but we keep the complex
notation for consistency

_ ]:2 ‘ 6“

— iwé [_A(w)ei(wt—E-F) 4 A*(w)e—i(wt—E-F)]



Interaction Hamiltonian

 The unpertubed Hamiltonian for a H — like atom with
nucleus of charge Z is

(-in?)"  ze?

H, = —
0 2m (4mey)r

* It can be proved that the total Hamiltonian, including the
interaction term is

h2P2 Ze? HE 7.5 e? 7
2m  (4mey)r Nt 2m

H =

3N 3



Interaction Hamiltonian

nvr_Ze? Ty oA ey
2m  (4mey)n Y 2m

H =

 Two pertubation terms: one linear and the other quadratic in A
* Consider now the linear term .
H =—ih—A-V
m
. Since A(#t) = & [A(w)ei(“’t_k'ﬂ + A(w)e‘i(wt_k'f)]
it is precisely of the form
H'(t) = He'®t + HTe~twt
considered in time dependent pertubation theory
> H = éA(a))e‘iz'F, HT = éA(a))eiE’F
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Interaction Hamiltonian

e - S
H =—ih—A-V
m
H'(t) = He'®t + HTe 0wt
* This term describes stimulated absorption and emission
processes. Let’s concentrate on absorption, also aptly called
photoelectric absorption since in the atom an electron makes

a transition induced by the absorption of a photon.

e Absorption is due to HTe™'?t, emission to He'®t

N



Cross section for photoelectric absorption

e Use Fermi’s golden rule. Consider transitions
between discrete bound states a and b.

m2 >A2((U) ‘(¢b|ei%°Fé - Vla)

li Z
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Dipole approximation

Consider the matrix element

Myq = (Wp|e*Té - Vlih,)

An important approximation can be performed in most
spectral ranges. Re-write the matrix element as an integral
in real space:

Myy = f &1 P, (F) e 2. F 1y (P)
V

[
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Dipole approximation

Myq = f, d*r " () €7 & 7 9 (P)

The spatial extent of the wavefunctions is at most of
the order of the typical atomic size d;~ 1 A: this
determines the maximum effective value of 7 in the
integral

The modulus of the wavevectoris k = 2771
Therefore if the wavelength is such that
2rdq <1
A

we can make the approximation that

elk-?‘ -1

18 d ‘u



Dipole approximation

For valence initial states the dipole approximation etk =1 s

valid up to the UV.
For core level initial states of not too light atoms the dipole

approximation continues to be valid.

19N \]}



The cross section in the dipole approx.

o =42 ho a [(Pp|é - Flpe) |26 (ES” — B — ho)

e Clearly, dimensions = L?
 The order of magnitude is determined by the

dipo
roug
over

e The
cons

e matrix element, an effective “area”
ly of the order of ay?, depending on the
ap of initial and final wavefunctions

Dirac 0 function is an expression of the
ervation of energy

* The apparent unphysical divergence will be
solved introducing the concept of lifetime of
states

_ 2() ‘



Selection rules

e Using the properties of the spherical harmonics it
can be shown that the selection rule on £ is

At = +1

* The selection rule on m depends on the state of
polarization of the radiation
» For linealy polarized radiation Am =0

» For circularly polarized radiation | Am = +1




AY

Am

+1

Selection rules

Conservation of angular momentum
(modulus)

Conservation of angular momentum
(quantization axis component)

o =
22N \]



A = +1
Am{) = 0, lin
= 41, circ
n=
n=
n=

Selection rules

E A

0 |
3
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Lifetime and lineshape

We have implicitly assumed that all atomic eigenstates have
infinite lifetime. Apart from the fundamental state (1s) this is
not true.
All states have a finite lifetime due to

» Spontaneous emission, also present for isolated atoms

» Collisions between atoms, which induce electron transitions, present
in gases at non negligible pressure

If N, atoms are in a given state at ¢ = 0, their number decays
exponentially as

t
N(t) s 1\’03_'F

For the H atom, the lifetimes 7 of electronic states are




Lifetime and lineshape

» A finite lifetime implies a spectral broadening
» Transitions do not occur at a single photon energy
hwp, = E,° — E,°
» Transitions occur in a band centered around
hwy, With a broadening I' which can be
estimated from the Heisenberg uncertainty
principle
* From the energy — time Heisenberg uncertainty

principle, interpret T as uncertainty in time,
thus

h
I' = —
T



Lifetime and lineshape

"+ |t can be proved that this spectral broadening results in a
Lorentzian lineshape as a function of energy
.* For a transition between states with lifetimes 7, and 7, the
Lorentzian half width at half maximum (HWHM) is
1 1
r=h(=+—)
Ta Tp
 The energy dependence of the cross section, the lineshape, is
proportional to

1"2
h?(wpg — w)? + I'?

L(w) =

* This spectral broadening resolves the apparently unphysical
result that the cross section is proportional to a § function.



Lifetime and lineshape
1"2
h?(wpg — w)?% +T'?

Llw) =

INo=
\1‘ i‘.

PN



Scattering of radiation

S ho', k'
ho, k / @

* From the particle point of view scattering is a 2
photon process: a photon is absorbed (destroyed) and
another is emitted (created).

* The scattered photon in general has a different energy
and different wave vector (modulus and/or direction)

* o'= w: elastic scattering e o'# w:inelastic scattering
» In general: Raleigh » In general: Raman
» For a free electron: Thomson » For a free electron: Compton (o'< @)




Scattering cross section

e Recall that the interaction Hamiltonian is

8 e’

= 4D + ZWA

with

A, t) = |A(@)e!@F) 4 A(w)e~H @R
—i(wt—k-7)

* Absorption is due to A(w)e

« Emission is due to A(w)e!(@t—K-7)

29N \Ji



Scattering cross section

e Scattering is a 2 photon process which is due to
2 5

» The quadratic term %AZ, in first order pertubation theory

(Fermi’s golden rule)

» The linear term %j - p , treated as a second order

pertubation
* (Qualitatively, it can be justified by interpreting each A
term as involving 1 photon (either absorbed or
emitted).



X-ray scattering cross section

 Term which describes scattering of X-rays (high energy
. .
limit) is ze—mA2 using 1st order pertubation theory.

e Define
g=k' —k

the exchanged wavevector.

QJ
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Fermi’s GD for continuum final states

e Fermi’s GD for final states in the continuum is
21T ~ 2 0
Wya = T‘HTba‘ P(Eb )
Ebo — an + h(,l)

* The density of states p(E) is the number of states
of energy between E and E + dFE:
dN = p(E) dE
with the specification of the dispersion relation
applicable for photons
w = ck
E =hw = hck

2 BN



Scattering geometry

* We will discuss the cross section for scattering in which
the scattered photon has direction defined by the

wave vector k' within an infinitesimal solid angle d()

B3N]



X-ray scattering cross section
* It can be proved that the differential cross section is

d et ! .
d (‘“ )(é . £")2|(ble~t7|a)|"

aa 16m2efm?ct \ w

— TOZ (&) (é‘ . é\l)z‘(ble—iﬁ-Fla)‘z

w

eZ

=~ 2.82 x10715 m, the «classical electron radius» or

To = ATEgMC?
0
«Thomson scattering length»

i) N



Scattering of radiation: general case

* Inthe general case (not only X-rays) one has to use both terms
of the interaction Hamiltonian

m 2m
L T
T m p 2m

Linear term: second order pertubation theory
Quadratic term: first order pertubation theory

35N Al



Scattering of radiation: general case

* It can be demonstrated that in the dipole approximation the
differential cross section is the Kramers — Heisenberg formula

Y] M of (Gl DTG DN Y IGRL D)
do (ES —ES — hw)  (ES —E? + ho")]

n

with the condition that
EY + hw = E} + ho'

and the sum is over all atomic states n.




Scattering of radiation: general case

do _ & Py B 7 2-7pn) (2" Fna) |2
G = rdww |m 3, | GRS+ el
* A «picture» of this equation
» Scattering is due to the sum of «virtual» transitions to
intermediate states.
» Conservation of energy is valid only globally, not for

transitions to intermediate «virtual» states

TN O3
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